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ABSTRACT

We prove a subgaussian extension of a Gaussian result on embedding sub-

sets of a Euclidean space into normed spaces. Using the concentration of

a random subgaussian vector around its mean we obtain an isomorphic

(rather than almost isometric) result, under an additional cotype assump-

tion on the normed space considered.

1. Introduction

The motivation behind this paper is the following Gaussian result on embedding

subsets of a Euclidean space into normed spaces. Let (gi) and (gij) be indepen-

dent standard Gaussian random variables and set (ei)
k
i=1 to be the standard
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unit vector basis in R
k. We denote by | · | the Euclidean norm on R

k and by

Sn−1 the Euclidean sphere in R
n.

Theorem 1.1: There exists an absolute constant c for which the following

holds. Set n, k ≥ 1, consider T ⊂ Sn−1 and let E = (Rk, ‖ ‖E) be a normed

space such that for every x ∈ R
k, ‖x‖E ≤ |x|. Fix ε > 0 and assume that

(1.1) E sup
t∈T

∣

∣

∣

∣

n
∑

i=1

giti

∣

∣

∣

∣

≤ c εE

∥

∥

∥

∥

k
∑

i=1

giei

∥

∥

∥

∥

E

.

If the random operator Γ : R
n → R

k is defined by Γt =
∑k

i=1

∑n
j=1 gijtjei, then

there is a realization of Γ such that for every t ∈ T ,

(1 − ε)E

∥

∥

∥

∥

k
∑

i=1

giei

∥

∥

∥

∥

E

≤ ‖Γt|E ≤ (1 + ε)E

∥

∥

∥

∥

k
∑

i=1

giei

∥

∥

∥

∥

E

.

Theorem 1.1 is a simple application of the Gaussian min-max theorem proved

originally by Y. Gordon in [G1] and is an easy modification of the method of

the proof of Dvoretzky’s theorem and other applications in [G1] and [G2] (see

also [G3]). The theorem has been recently rediscovered by G. Schechtman [S]

who has given it a new proof using the majorizing measures approach. Another

proof is an unpublished argument by G. Pisier [Pi4], based on his Gaussian

concentration measure theorem (cf. e.g., [Pi3]). The formulation of Theorem

1.1 is taken from [S]. One should note that all three approaches are limited to

the case where Γ is a Gaussian operator.

In this article we show that one can use the concentration of a random vector

‖Γt‖E around its mean to prove an isomorphic (rather than almost isometric)

analog of Theorem 1.1, where the Gaussian operator is replaced by an arbitrary

subgaussian operator, under a cotype assumption on the space E.

To explain the notion of a subgaussian operator we use here, recall that the

ψ2 norm of a random variable X is defined by

‖X‖ψ2
= inf

{

u > 0 : E exp
(

|X |2/u2
)

≤ 2
}

.

Let µ be a symmetric measure on R
n which satisfies that for every t ∈ R

n,

E 〈X, t〉2 = |t|2 and ‖ 〈X, t〉 ‖ψ2
≤ L|t|. In other words, µ is a symmetric

isotropic measure on R
n and linear functionals exhibit a subgaussian decay

of the order of exp(−cu2/L2) where c is an absolute constant and u ≥ 1.
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The operator Γ : R
n → R

k is said to be subgaussian with a constant L if

Γ =
∑k

i=1 〈Xi, ·〉 ei, where (Xi)
k
i=1 are independent random vectors, distributed

according to a L subgaussian measure on R
n.

Let us recall the concept of cotype of a Banach space which plays a key role

in our approach. A Banach space E has cotype q ≥ 2 with a constant βq if for

all finite sequences (zi) in E,

(

∑

i

‖zi‖qE
)1/q

≤ βq E

∥

∥

∥

∑

i

εizi

∥

∥

∥

E
,

where (εi)i is a sequence of independent Bernoulli random variables. Now let

us formulate our main result.

Theorem 1.2: There exist absolute constants c1, c2, c3 > 0 for which the fol-

lowing holds. Set n, k ≥ 1, consider T ⊂ Sn−1 and let E = (Rk, ‖ ‖E) be a

normed space satisfying ‖x‖E ≤ |x|, for x ∈ R
k. Fix L > 0, assume that E has

cotype q with a constant βq and that

(1.2) E sup
t∈T

∣

∣

∣

∣

n
∑

i=1

giti

∣

∣

∣

∣

≤ c(L, q, βq) E

∥

∥

∥

∥

k
∑

i=1

giei

∥

∥

∥

∥

E

/
√

log k,

where c(L, q, βq) := c3/L
2β2
q

√
q.

If Γ is a subgaussian operator with a constant L then, with probability close

to 1, for every t ∈ T

(1.3) c′(L, q, βq) E

∥

∥

∥

∥

k
∑

i=1

giei

∥

∥

∥

∥

E

≤ ‖Γt‖E ≤ c2LE

∥

∥

∥

∥

k
∑

i=1

giei

∥

∥

∥

∥

E

,

where c′(L, q, βq) := c1/Lβq
√
q. Moreover, if Γ is an operator with independent

Bernoulli random entries then the assertion of the theorem remains true with

(1.2) replaced by

(1.4) E sup
t∈T

∣

∣

∣

∣

n
∑

i=1

giti

∣

∣

∣

∣

≤ c(L, q, βq) E

∥

∥

∥

∥

k
∑

i=1

giei

∥

∥

∥

∥

E

.

To illustrate the main theorem we shall formulate just one result for random

±1 embeddings of the Euclidean space.
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Corollary 1.3: Let E = (Rk, ‖ ‖E) be a normed space of cotype q with a

constant βq such that for every x ∈ R
k, ‖x‖E ≤ |x|. Assume that

n ≤ (c1/β
2
q q)

(

E

∥

∥

∥

∥

k
∑

i=1

giei

∥

∥

∥

∥

E

)2

,

where c1 > 0 is an absolute constant. Let Γ : R
n → R

k be a random op-

erator with independent Bernoulli entries. Then, with probability close to

1, the random subspace F := Γ(Rn) ⊂ R
k spanned by ±1 vectors satisfies

c′A|z| ≤ ‖z‖E ≤ c′′A|z| for all z ∈ F , where A = E‖
∑

giei‖E/
√
k, and

c′, c′′ > 0 depend on L, q, βq.

In particular, if the Euclidean unit ball on R
k is the maximal volume ellipsoid

for the unit ball BE of E then the assertion holds once n ≤ (c1/β
2
qq)k

2/q.

We end this introduction with some notation and definitions we will use

throughout this note. For a finite set A, denote by |A| its cardinality. With a

minor abuse of notation, we also denote by | · | the fixed Euclidean structure

we consider, and let (ei) be the standard unit vector basis with respect to that

structure. If A ⊂ R
m, let ℓ∗(A) = E supa∈A |∑m

i=1 giai|, where (gi)
m
i=1 are

independent standard Gaussian variables. Note that if A = BE∗ , the unit ball

of the dual space to E, then ℓ∗(A) = E‖∑k
i=1 giei‖E. Finally, all absolute

constants are denoted by c, c1, . . .. Their values may change from line to line.

Acknowledgement: The authors wish to thank Olivier Guédon, Gilles Pisier

and Gideon Schechtman for several interesting conversations. They are also

indebted to Gilles Pisier for pointing out a simpler proof to Lemma 2.6 than

the original one. This work has begun when the second-named author visited

the Australian National University, and has been concluded when the both

authors participated in the Trimester “Phenomena in High Dimensions” at the

Centre Emile Borel in the Institute Henri Poincaré. They are grateful to these

institutions for their hospitality and an excellent working atmosphere.

2. Preliminaries - Subgaussian vectors

We will be interested in independent, symmetric random variables that exhibit

a subgaussian tail behaviour. We begin this section by recalling some of the

basic facts concerning random variables with certain decay properties. For basic

properties of such random variables we refer the reader to [LTa, DG].
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Definition 2.1: For α ≥ 1 the ψα norm, of a random variable X is defined by

‖X‖ψα
= inf {λ > 0 : E exp(|X |α/λα) ≤ 2} .

It is standard to verify that if X has a bounded ψα norm, then for t ≥ 1

P (|X | ≥ t) ≤ 2 exp(−ctα/‖X‖αψα
)

where c is an absolute constant. The converse is also true, and if X has a tail

bounded by exp(−tα/Kα) then ‖X‖ψα
≤ c1K.

Another basic property of the ψ2 norm is that if X1, . . . , Xn are independent

and centered then

(2.1)

∥

∥

∥

∥

n
∑

i=1

aiXi

∥

∥

∥

∥

ψ2

≤ c

( n
∑

i=1

a2
i ‖Xi‖2

ψ2

)1/2

,

where c is an absolute constant. If (Xi)
n
i=1 are symmetric, (2.1) follows from an

easy calculation using the moment generating function of the sum and the fact

that for every t > 0, E exp(tX) ≤ exp(t2b2), where b = c1‖X‖ψ2
. The extension

of (2.1) from the symmetric case to the centered one is evident from a standard

symmetrization argument.

We require two additional preliminary results. First, a bound due to Pisier

[Pi1] (cf. also [VW] Section 2.2) on the ψα norm of a maximum of k random

variables, which we formulate only for α = 1.

Lemma 2.2: There exists an absolute constant c for which the following holds.

Let X1, ..., Xk be random variables. Then,
∥

∥

∥
max
1≤i≤k

|Xi|
∥

∥

∥

ψ1

≤ c max
1≤i≤k

‖Xi‖ψ1
log k.

The second preliminary result deals with the ψ1 behaviour of a sum of inde-

pendent ψ1 random variables, and is due to Talagrand (see, e.g. [LTa], Theorem

6.21).

Theorem 2.3: There exists an absolute constant c such that if X1, ..., Xk are

independent, centered random variables then

∥

∥

∥

∥

k
∑

i=1

Xi

∥

∥

∥

∥

ψ1

≤ c

(∥

∥

∥

∥

k
∑

i=1

Xi

∥

∥

∥

∥

L1

+
∥

∥

∥
max
1≤i≤k

|Xi|
∥

∥

∥

ψ1

)

.

Consider a random process {Zt : t ∈ T } indexed by a metric space (T, d). We

say that the process is subgaussian with respect to the metric d if it satisfies
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the increment condition that for every x, y ∈ T and every u ≥ 1,

P (|Zx − Zy| ≥ ud(x, y)) ≤ 2 exp(−u2/2)

(the constants 2 and 1/2 can be replaced by any other fixed constants, as can

be the restriction u ≥ 1).

The generic chaining mechanism allows one to obtain an exponential devi-

ation inequality for supt∈T |Zt−Zt0 | where t0 is an arbitrary point in T using an

increment condition. To that end we require the definition of the γ2 functional

[Ta3].

Definition 2.4: Let (T, d) be a metric space. An admissible sequence of T is a

collection of subsets of T , {Ts : s ≥ 0}, such that for every s ≥ 1, |Ts| = 22s

and |T0| = 1. Define the γ2 functional by

γ2(T, d) = inf sup
t∈T

∞
∑

s=0

2s/2d(t, Ts),

where d(t, Ts) is the distance between the set Ts and t, and the infimum is taken

with respect to all admissible sequences of T .

It is well-known that the γ2(T ) functional, with respect to a Euclidean metric,

is connected to the behaviour of a Gaussian process indexed by T . Indeed, let

{Gt : t ∈ T } be a centered Gaussian process indexed by a set T , and for every

s, t ∈ T , let d2(s, t) = E|Gs −Gt|2. Then

c1γ2(T, d) ≤ E sup
t∈T

|Gt| ≤ c2γ2(T, d),

where c1 and c2 are absolute constants. The upper bound is due to Fernique

[F] and the lower bound is Talagrand’s majorizing measure theorem [Ta1]. The

proof of both parts and the most recent survey on the topic can be found in

[Ta3].

Let us state a typical deviation estimate that follows from a generic chaining

argument. Proofs of a similar flavor can also be found in [Ta3, Chapter 1].

Theorem 2.5: There exists an absolute constant c for which the following

holds. Let (T, d) be a metric space and assume the process {Zt : t ∈ T } is

subgaussian with respect to the metric d. Then, for any u ≥ 4 and any t0 ∈ T ,

P

(

sup
t∈T

|Zt − Zt0 | ≥ uγ2(T, d)

)

≤ 2 exp
(

−cu2
)

.
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Let (ξi)
k
i=1 be i.i.d. symmetric random variables which satisfy the subgaussian

condition ‖ξ‖ψ2
≤ L. We are interested in the moments of the random variable

‖∑k
i=1 ξiei‖E , where ‖ ‖E is a norm on R

k. An important part in our argument

is the fact that under a cotype assumption on E, these moments are equivalent

to the analogous Gaussian moments.

The first observation in this direction compares the Lp(E) norm of a sub-

gaussian vector with the L1(E) norm of a Gaussian one. The proof we present

here is due to Jain and Marcus [JM]. It was shown to us by G. Pisier and we

present it for the sake of completeness.

Lemma 2.6: There exists an absolute constant c for which the following holds.

Let p ≥ 1 and set (ξi)
k
i=1 to be independent symmetric random variables which

satisfy that Eξ2i = 1 and ‖ξi‖ψ2
≤ L. Then

∥

∥

∥

∥

k
∑

i=1

ξiei

∥

∥

∥

∥

Lp(E)

≤ cL
√
p

∥

∥

∥

∥

k
∑

i=1

giei

∥

∥

∥

∥

L1(E)

.

Proof. Let ξ be a symmetric L subgaussian random variable. Then there is a

centered Gaussian variable denoted by Y with variance σ2
Y = cL2, such that for

every t ≥ 1,

P (|ξ| ≥ t) ≤ P (|Y | ≥ t) .

Let ξ∗ and Y ∗ be the decreasing rearrangements of ξ and Y , respectively, defined

on [0, 1]. That is, ξ∗(x) = inf{t : P(|ξ| > t) ≤ x} for all x ∈ [0, 1], and Y ∗ is

defined similarly. Note that Y ∗ is continuous on [0, 1] and for every x ∈ [0, 1],

ξ∗(x) ≤ 1 + Y ∗(x).

Indeed, observe that if f∗ is a decreasing rearrangement of f then for every

t, f∗(P(|f | ≥ t)) ≤ t, and the equality holds if f∗ is continuous at the point

x = P(|f | ≥ t).

Now, for t ≥ 1 set xt := P(|ξ| ≥ t) and yt := P(|Y | ≥ t). Then yt ≥ xt and

ξ∗(xt) ≤ Y ∗(yt) ≤ Y ∗(xt). This implies that ξ∗(x) ≤ Y ∗(x) for all x ∈ [0, x1],

where x1 = P(|ξ| ≥ 1). For x ≥ x1, ξ
∗(x) ≤ 1, and Y ∗ is non-negative. The

combination of the two observations gives the desired inequality.

Let (ξi)
k
i=1 be as in the lemma and consider (ξ∗i )

k
i=1. If (εi)

k
i=1 are independent

Bernoulli variables then εiξ
∗
i has the same distribution as ξi, for i = 1, . . . , k.

A similar fact holds for (Y ∗
i )ki=1 and (Yi)

k
i=1.
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By the Kahane–Khintchine inequality and the contraction principle for

Bernoulli processes (see, e.g. [LTa]), for every p ≥ 1,

E

∥

∥

∥

∥

k
∑

i=1

ξiei

∥

∥

∥

∥

p

E

=

∫ 1

0

Eε

∥

∥

∥

∥

k
∑

i=1

εiξ
∗
i (x)ei

∥

∥

∥

∥

p

E

≤ cpp/2
∫ 1

0

Eε

∥

∥

∥

∥

k
∑

i=1

εi(Y
∗
i (x) + 1)ei

∥

∥

∥

∥

E

.

Hence,
∥

∥

∥

∥

k
∑

i=1

ξiei

∥

∥

∥

∥

Lp(E)

≤ c
√
p

(∥

∥

∥

∥

k
∑

i=1

εiei

∥

∥

∥

∥

L1(E)

+

∥

∥

∥

∥

k
∑

i=1

Yiei

∥

∥

∥

∥

L1(E)

)

.

The claim now follows from the definition of Y and the fact that Rademacher

averages are dominated by Gaussian ones (see, e.g. [LTa] or [MS], Appendix

II).

Lemma 2.6 provides the “general” direction in the equivalence between the

Lp(E) norms of subgaussian and Gaussian vectors—that holds without any

structural assumptions on E. The reverse direction is not true for an arbitrary

space E, but rather, requires cotype assumptions. The following theorem was

proved in [MaPi] (see also [Pi2]). The proof for the Rademacher case can be

found in Appendix II of [MS]. It is straightforward to check that only minimal

modifications to that proof are needed to show that it actually holds for an

arbitrary subgaussian symmetric variable, and thus we omit the proof.

Theorem 2.7: For every p ≥ 1 there exists a constant c(p) for which the

following holds. Let E be a Banach space of cotype q with a constant βq. Let

(ξi)
k
i=1 be independent symmetric random variables such that Eξ2i = 1 and

‖ξi‖ψ2
≤ L. Then, for every x1, . . . , xk ∈ E,

∥

∥

∥

∥

k
∑

i=1

gixi

∥

∥

∥

∥

Lp(E)

≤ c(p)L
√
qβq

∥

∥

∥

∥

k
∑

i=1

ξixi

∥

∥

∥

∥

Lp(E)

.

Moreover, c(p) is an absolute constant for p ≤ q.

For our needs it suffices to obtain an equivalence result for p = 1.

Corollary 2.8: There exist absolute constants c1 and c2 for which the fol-

lowing holds. Consider (ξi)
k
i=1 as above and assume that E has cotype q with

a constant βq. Then,

(c1/L)

∥

∥

∥

∥

k
∑

i=1

ξiei

∥

∥

∥

∥

L1(E)

≤
∥

∥

∥

∥

k
∑

i=1

giei

∥

∥

∥

∥

L1(E)

≤ c2L
√
qβq

∥

∥

∥

∥

k
∑

i=1

ξiei

∥

∥

∥

∥

L1(E)

.
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3. The main result

The proof of Theorem 1.2 is based on three ingredients. The first one is a

concentration result for each one of the random variables

Zt =

∥

∥

∥

∥

k
∑

i=1

〈Xi, t〉 ei
∥

∥

∥

∥

E

around its mean.

Definition 3.1: Let k ≥ 1 and set (ξi)
k
i=1 to be independent random variables

with distribution ξ. A space E = (Rk, ‖ ‖E) is α concentrated with respect to

ξ if

P

(
∣

∣

∣

∣

∥

∥

∥

∥

k
∑

i=1

ξiei

∥

∥

∥

∥

E

− E

∥

∥

∥

∥

k
∑

i=1

ξiei

∥

∥

∥

∥

E

∣

∣

∣

∣

≥ 1

2
E

∥

∥

∥

∥

k
∑

i=1

ξiei

∥

∥

∥

∥

E

)

≤ 2 exp
(

− (E‖∑k
i=1 ξiei‖E)2

α2

)

.

The concentration result for Gaussian or Rademacher vectors (see e.g. [LTa])

shows that if for every x ∈ E, ‖x‖E ≤ |x|, then E satisfies Definition 3.1 for

α which is an absolute constant. We will show later that a slightly weaker

estimate α ∼ L
√

log k holds for an arbitrary k-dimensional space and any L

subgaussian random variable. The concentration assumption, combined with

an approximation argument, leads to the following technical embedding result.

Theorem 3.2: There exist absolute constants c1 and c2 for which the following

holds. Let µ be an isotropic ψ2 probability measure on R
n with a constant L and

set X to be distributed according to µ. Let Γ be the corresponding operator,

i.e., Γt =
∑k

i=1 〈Xi, t〉 ei for t ∈ R
n. Consider T ⊂ Sn−1 and for every t ∈ T

denote ξt = 〈X, t〉.
Let E be a k dimensional space which is α concentrated with respect to ξt

for every t ∈ T . Fix ε > 0 and set

(3.1) H := L

(

ℓ∗(T ) + εE

∥

∥

∥

∥

k
∑

i=1

giei

∥

∥

∥

∥

E

)
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and p0 := exp
(

c1ℓ
2
∗(T )/ε2− inft∈T (E‖∑k

i=1 〈Xi, t〉 ei‖E)2/α2
)

. Then, for every

s ≥ 1, with probability at least 1 − p0 − 2 exp(−s2), we have, for every t ∈ T ,

(3.2)
1

2
E‖Γt‖E − c2sH ≤ ‖Γt‖E ≤ 3

2
E‖Γt‖E + c2sH.

Proof. Let Λ be an ε-net of T with respect to the Euclidean norm | · |. By

Sudakov’s inequality (cf. e.g., [Pi3]), log |Λ| ≤ c1ℓ
2
∗(T )/ε2. Applying the α

concentration assumption,

P

(

∃ v ∈ Λ :

∣

∣

∣

∣

∥

∥

∥

∥

k
∑

i=1

〈Xi, v〉 ei
∥

∥

∥

∥

E

− E

∥

∥

∥

∥

k
∑

i=1

〈Xi, v〉 ei
∥

∥

∥

∥

E

∣

∣

∣

∣

≥ 1

2
E

∥

∥

∥

∥

k
∑

i=1

〈Xi, v〉 ei
∥

∥

∥

∥

E

)

≤
∑

v∈Λ

exp

(

− (E‖∑k
i=1 〈Xi, v〉 ei‖E)2

α2

)

≤ exp

(

c1
ℓ2∗(T )

ε2
− inft∈T (E‖∑k

i=1 〈Xi, t〉 ei‖E)2

α2

)

= p0.

Set U := (T − T ) ∩ εBk2 and observe that T ⊂ Λ + U . Thus by an easy

approximation argument the theorem will follow from the above estimate, the

lemma below and the fact that ℓ∗(T − T ) ≤ 2ℓ∗(T ).

The proof of the following lemma is based on a standard generic chaining

argument [Ta3].

Lemma 3.3: Let T̃ ⊂ R
n, ε > 0, Ũ := T̃ ∩ εBn2 and consider E and Γ to be as

in Theorem 3.2. Then, for any s ≥ 1,

P

(

sup
u∈Ũ

‖Γu‖E ≤ c3s H̃

)

≥ 1 − 2 exp(−s2),

where H̃ is given by (3.1), by replacing T by T̃ , and c3 > 0 is an absolute

constant.

Proof. Let BE∗ denote the unit ball of E∗ and consider the process

(u, y) → Zu,y :=
k
∑

i=1

〈Xi, u〉 〈ei, y〉 .

indexed by Ũ×BE∗ . Clearly, sup{u∈Ũ, y∈BE∗} Zu,y = supu∈Ũ ‖Γu‖E. Note that

Z is centered and subgaussian with respect to the appropriate metric. Indeed,
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the increment associated with the elements (u, y) and (u1, y1) satisfies

|Zu,y − Zu1,y1 | ≤ |Zu,y − Zu,y1 | + |Zu,y1 − Zu1,y1 |

=

∣

∣

∣

∣

k
∑

i=1

〈Xi, u〉 〈y − y1, ei〉
∣

∣

∣

∣

+

∣

∣

∣

∣

k
∑

i=1

〈Xi, u− u1〉 〈y1, ei〉
∣

∣

∣

∣

.

Using (2.1) we can bound the ψ2 norm of the first term by

‖ 〈X,u〉 ‖ψ2

( k
∑

i=1

〈y − y1, ei〉2
)1/2

≤ L|u| · |y − y1| ≤ Lε|y − y1|,

where the last inequality follows from Ũ ⊂ εBk2 .

By a similar argument, the second term has a ψ2 norm at most L|u−u1||y1| ≤
L|u−u1|, because ‖y1‖E∗ ≤ 1 and since the condition ‖x‖E ≤ |x| for every x im-

plies |y| ≤ ‖y‖E∗ for every y. Hence, adding the two probabilities corresponding

to the two terms above, it follows that for every s ≥ 1,

P (|Zu,y − Zu1,y1 | ≥ c4sL (ε|y − y1| + |u− u1|)) ≤ 2 exp(−s2).

Applying a generic chaining argument combined with the majorizing mea-

sures Theorem,

E sup
u,y

|Zu,y| ≤ cL
(

γ2(Ũ , | · |) + εγ2(BE∗ , | · |)
)

≤ c3L

(

ℓ∗(Ũ) + εE

∥

∥

∥

∥

k
∑

i=1

giei

∥

∥

∥

∥

E

)

≤ c3H̃,

and moreover, for every s ≥ 1

P

(

sup
u,y

|Zu,y| ≥ c3s H̃

)

≤ 2 exp(−s2),

from which the claim follows. This also completes the proof of Theorem

3.2.

Remark 3.4: Let us note that in the Gaussian case, a version of Lemma 3.3

(with probability larger than or equal to 1 − 1/s) is a consequence of Chevet’s

inequality (based on Slepian’s lemma) followed by Chebyshev’s inequality.

In order to apply Theorem 3.2, we shall need to control probability p0 and

the expressions appearing in (3.2). This will follow from the third and the final
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fact we require, namely, that if E has cotype q with a constant βq and T ⊂ Sn−1

then

(3.3)

c5
L

sup
t∈T

E

∥

∥

∥

∥

k
∑

i=1

〈Xi, t〉 ei
∥

∥

∥

∥

E

≤ E

∥

∥

∥

∥

k
∑

i=1

giei

∥

∥

∥

∥

E

≤ c4L
√
qβq inf

t∈T
E

∥

∥

∥

∥

k
∑

i=1

〈Xi, t〉 ei
∥

∥

∥

∥

E

,

for suitable absolute constants c4, c5. This is evident by applying Corollary 2.8

for ξi = 〈Xi, t〉.

Thus, all that is needed for the proof of Theorem 1.2 is to show an appropriate

concentration result for an arbitrary subgaussian measure.

Let us mention once again that for the Gaussian of the Rademacher measures

such a concentration result is well-known, and yields the estimate of α being an

absolute constant. This will show the “moreover” part of the theorem. For the

general case, consider the following

Lemma 3.5: There exists an absolute constant c6 > 0 for which the follow-

ing holds. Let (ξi)
k
i=1 be i.i.d. symmetric subgaussian random variables with

‖ξ‖ψ2
≤ L. Let E = (Rk, ‖ ‖E), such that for every x ∈ E, ‖x‖E ≤ |x|. Then

for every t ≥ 2,

P

(∣

∣

∣

∣

∥

∥

∥

∥

k
∑

i=1

ξiei

∥

∥

∥

∥

E

− E

∥

∥

∥

∥

k
∑

i=1

ξiei

∥

∥

∥

∥

E

∣

∣

∣

∣

≥ t

)

≤ 2 exp(−c6t2/L2 log2 k).

The idea of the proof is to truncate the variables ξi at the right level, that

is, to split each of the ξi to ξ− = ξ1{|ξ|≤ρ} and ξ+ = ξ1{|ξ|>ρ} for some fixed ρ.

We will show that the truncated part ‖∑k
i=1 ξ

−
i ei‖E is concentrated around its

mean using Talagrand’s convex distance inequality [Ta2] (see also [L], Corollary

4.10). The second part is bounded with high probability because the variables

ξi decay rapidly.

Proof. Consider the truncated variable ξ− = ξ1{|ξ|≤ρ} and ξ+ = ξ1{|ξ|>ρ},

where ρ will be determined later. The first step is to prove a concentration re-

sult for ‖∑k
i=1 ξ

−
i ei‖E around its mean. Indeed, as a function on [−ρ, ρ]k,

‖
∑k
i=1 aiei‖E is convex. Moreover, since ‖x‖E ≤ |x|, it is 1-Lipschitz on

([−ρ, ρ]k, | · |). Thus, by the convex distance inequality it follows that for every
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t > 0

(3.4) P

(∣

∣

∣

∣

∥

∥

∥

∥

k
∑

i=1

ξ−i ei

∥

∥

∥

∥

E

− E

∥

∥

∥

∥

k
∑

i=1

ξ−i ei

∥

∥

∥

∥

E

∣

∣

∣

∣

≥ t

)

≤ exp(−c′1t2/ρ2)

for a suitable absolute constant c′1.

To take care of the “unbounded” part we shall require some properties of

Orlicz norms. First, by Theorem 2.3, if X1, ..., Xk are independent, centered

random variables then

(3.5)

∥

∥

∥

∥

k
∑

i=1

Xi

∥

∥

∥

∥

ψ1

≤ c′2

(
∥

∥

∥

∥

k
∑

i=1

Xi

∥

∥

∥

∥

L1

+ |max |Xi|‖ψ1

)

.

Also, for any random variable X , ‖X2‖ψ1
= ‖X‖2

ψ2
, and, by Lemma 2.2, if

(Xi)
k
i=1 are identically distributed random variables then ‖max1≤i≤k |Xi|‖ψ1

≤
‖X‖ψ1

log k.

LetXi = (ξ+i )2−E(ξ+i )2. By the remarks above it is clear that ‖Xi‖ψ1
≤ c′3L

2

and a standard calculation yields that

‖
k
∑

i=1

Xi‖L1
≤ c′3k(ρ

2 + 2L2) exp(−c′4ρ2/L2)

for suitable absolute constants c′3 and c′4. Hence, by (3.5),
∥

∥

∥

∥

k
∑

i=1

(ξ+i )2
∥

∥

∥

∥

ψ1

≤ c′5
(

k(ρ2 + 2L2) exp(−c′4ρ2/L2) + L2 log k
)

for an absolute constant c′5.

Since ‖x‖E ≤ |x| then ‖∑k
i=1 ξ

+
i ei‖E ≤

(

∑k
i=1(ξ

+
i )2
)1/2

. Thus, setting

ρ = c′6L
√

log k,
∥

∥

∥

∥

k
∑

i=1

ξ+i ei

∥

∥

∥

∥

ψ2(E)

≤ c′7L
√

log k, E

∥

∥

∥

∥

k
∑

i=1

ξ+i ei

∥

∥

∥

∥

E

≤ 1.

Therefore, if t ≥ 2,

(3.6) P

(∥

∥

∥

∥

k
∑

i=1

ξ+i ei

∥

∥

∥

∥

E

+ E

∥

∥

∥

∥

k
∑

i=1

ξ+i ei

∥

∥

∥

∥

E

≥ t

)

≤ 2 exp(−c′8t2/L2 log k).

The claim follows by combining (3.4) and (3.6).
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Proof of Theorem 1.2. Let c1, c2, c3, c4, c5, c6 denote the constants appearing

earlier throughout this section. Let α be the constant from Definition 3.1 (we

may clearly assume that α ≥ 1), and note that by Lemma 3.5, α ≤ L
√

log k/c6.

However, for clarity, we shall make our calculations for a general α. Let

s ≥ 1. We shall show that for every s ≥ 1, (1.3) holds with probability

1 − p̃0 − 2 exp(−s2), where p̃0 = exp(−c̃4 (E‖
∑k

i=1 giei‖E)2/α2) and c̃4 > 0

is an absolute constant.

To this end we shall use Theorem 3.2. Fix ε > 0 to be determined later and

assume that T and E satisfy

(3.7) ℓ∗(T ) ≤
(

εc′/L
√
q βq α

)

E

∥

∥

∥

∥

k
∑

i=1

giei

∥

∥

∥

∥

E

for some constant 0 < c′ < 1. A straightforward calculation shows that if c′ is

sufficiently small (depending on c1, c4) then p0 defined in the Theorem satisfies

p0 ≤ p̃0, with constant c̃4 depending only on c1, c4 and c′. Furthermore,

H ≤ (ε/
√
q βq)

(

(c′/α) + L
√
q βq

)

E

∥

∥

∥

∥

k
∑

i=1

giei

∥

∥

∥

∥

E

.

Combining this with (3.2) and (3.3) it follows that

‖Γt‖E ≥
( 1

2c4L
√
q βq

− c2sε√
q βq

(c′

α
+ L

√
q βq

))

E

∥

∥

∥

∥

k
∑

i=1

giei

∥

∥

∥

∥

E

.

Letting ε = c′′/(sL2√q βq) for an appropriate absolute constant c′′ > 0, and

noting that L, q and βq are greater than 1, we conclude the left hand side of

(1.3). The same choice of ε also yields the right hand side. Finally we note that

with our choice of ε > 0 condition (3.7) amounts to (1.2).

As already mentioned, the “moreover part” follows from the fact that in this

case α is an absolute constant. This completes the proof.

As an example, let us consider the case when E = ℓk2 for an appropriate

dimension k. Since E has cotype 2 with constant 1 our assumptions hold, and

we obtain that for any isotropic, subgaussian vector X , the random operator

Γ =
∑k

i=1 〈Xi, ·〉 ei satisfies

c1
√
k ≤ ‖Γt‖ ≤ c2

√
k,
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whenever ℓ∗(T ) ≤ c3
√
k/ log k (and in the Gaussian or Rademacher cases, the

logarithmic term can be removed). This can be viewed as a weaker, “isomor-

phic” version of the main result in [KM] (see also [MPT]). Of course, the proof

in [KM] uses the fact that E is Euclidean in a very strong way while the main

idea here is that the proof should work for an arbitrary space with cotype.

Another noteworthy point that follows from the proof is that if X is a Gauss-

ian vector, one can obtain a version of Theorem 1.1. In this case, as was noted

in Remark 3.4, the use of the majorizing measure theorem in Lemma 3.3 can be

replaced by Chevet’s inequality (or Slepian’s lemma). However, this argument

gives worse dependence on ε > 0, namely, the main assumption (1.1) must be

satisfied with ε2 replacing ε.
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et propriétés géométriques des espaces de Banach, Studia Mathematica, 58 (1976),

45–90.

[MPT] S. Mendelson, A. Pajor and N. Tomczak-Jaegermann, Reconstruction and subgaussian

operators, in Asymptotic Geometric Analysis, Geometric and Functional Analysis, 17

(2007), 1248–1282.



364 S. MENDELSON AND N. TOMCZAK-JAEGERMANN Isr. J. Math.

[MS] V. D. Milman and G. Schechtman, Asymptotic Theory of Finite Dimensional Normed

Spaces, Lecture Notes in Mathematics, 1200, Springer 1986.

[Pi1] G. Pisier, Some applications of the metric entropy condition to harmonic analysis, in

Lecture Notes in Mathematics, 995, Springer, Berlin, 1983, pp. 123–154.

[Pi2] G. Pisier, Probabilistic methods in the geometry of Banach spaces, in Probability and

analysis (Varenna, 1985), Lecture Notes in Mathematics, 1206, Springer, Berlin, 1986,

pp. 167–241.

[Pi3] G. Pisier, The Volume of Convex Bodies and Banach Space Geometry, Cambridge

University Press, Cambridge, 1989.

[Pi4] G. Pisier, Private communication.

[S] G. Schechtman, Two observations regarding embedding subsets of Euclidean spaces

in normed spaces, Advances in Mathematics 200 (2006), 125–135.

[Ta1] M. Talagrand, Regularity of Gaussian processes, Acta Mathematica 159 (1987),

99–149.

[Ta2] M. Talagrand, Concentration of measure and isoperimetric inequalities in product
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